
CS 383 

HW 8 Solutions 

 

1. Alan Turing was interested In modeling computations rather than accepting/rejecting 

inputs. His TMs had not Accept state. Given an input they either halted (which is good) 

or ran forever.   So let Lhalt = {(M,w) | M is a TM  that halts (whether or not in a final 

state) on input w}   If you prefer you can write this as {m111w | m is the encoding of a 

TM that halts on input w}.  Show that Lhalt is recursively enumerable but not recursive. 

 

To see that Lhalt is recursively enumerable, let M* be a TM that takes as input (M,w) and 

simulates the computation of M on w.  If M ever enters a final state M* accepts (M,w). If 

M  ever enters a situation where it is not in a  final state and it has no transition fitting 

its current state and tape symbol (i.e. M halts not in a final state) the M* accepts (M,w).  

Otherwise M* keeps running.  M* accepts the language Lhalt. 

To see that Lhalt  isn’t recursive we reduce the universal language to it.  Remember that 

the universal language is {(M,w) | M accepts w}  Suppose we had a decider for Lhalt.  

Given an (M,w) pair ask if M halts on w; if not reject (M,w).  If M halts on w run a 

simulator of M on w to see what state it halts in. If it halts in a final state accept (M,w) 

otherwise reject (M,w).  This makes a decider for the universal language, which we 

know  can’t be. 

2. We showed that if a language and its complement are both RE then both are recursive.  

Suppose we have 3 recursively enumerable languages that are disjoint (no string is in 

two of them) and whose union is the set of all strings. Show that all three must be 

recursive. 

 

One way to do this is to say that the union of two recursively enumerable languages is 

recursively enumerable, so the complement of each language, which is the union of the 

other two, must be RE.  We know that if both a language and its complements are RE 

then the language must be recursive. 

 

Here’s a more constructive solution.  We start with languages L1, L2, and L3 and TMs 

M1, M2, and M3 that accept them.  Build a 4-tape TM M* with input w on Tape 1, and 

tapes 2,3,and 4  simulating the tapes of M2, M3, and M4.  The states of M* will be 

triples consisting of a state of M1, a state of M2 and a state of M3.  Given an input M, 

M* runs simultaneous simulations of the computations of M1, M2, and M3 on w.  If any 

of the TMs enter a final state M* halts.  Every string is in one of the three languages so 

M* always halts.  We could build 3 versions of M*. Version 1 accepts w if M* halts in 

and accept state for M1, and rejects w if M* halts in an accept state for M2 or M3. This 



is a decider for L1.  The other two versions give deciders for L2 and L3. 

 

3. Suppose L1 and L2 are both recursively enumerable.  Is the concatenation L1L2 RE?  

Why or  why not? 

 

Yes.  Suppose L1 and L2 are accepted by M1 and M2.  Given a string w with |w|=n, we 

need to run n+1 simultaneous pairs of simulations: ( on M1 and w on M2), (w[0] on M1 

and w[1:] on M2), (w[0:2] on M1 and w[2:] on M2),  etc.  If any pair of simulations ever 

halts and both computations accept, our simulator halts and accepts w.  Alternatively, 

use a nondetermi 

 

4. We know Lne is recursively enumerable but not recursive.  Let L2ne be {m | m encodes 

TM that accepts at least 2 strings}  Rice’s Theorem says L2ne  is not recursive.  Is it 

recursively enumerable?  Why or why not? 

 

Sure.  Let N be a non-deterministic TM that, given an encoding m, writes two arbitrary 

strings after it, so we have (m,w1,w2).  N then simulates the computation of m on w1 

and the computation of m on w2. If both halt and accept N enters an accept state.  This 

non-deterministic TM accepts L2ne and we know that any language accepted by a non-

deterministic TM is also accepted by a deterministic TM. 

 

5. Let Linf be {m | m encodes a TM that accepts infinitely many strings}.  Is Linf  RE? 

I thought  we should go out on a hard problem.  Neither Linf nor its complement are RE. 

To show Linf  is not RE we reduce the complement of Lhalt (which we know from Q1 

isn’t RE) to it.  Given an (M,w) pair build M’:  For input x, M’ simulates the computation 

of M on w for |x| steps.  If M is still running (i.e, after |x| steps M is at a state-tape 

combination for which there is a valid transition) then M’ accepts x.   

 

If M halts on w after N steps, then M’ does not accept any x with |x| > N.  This means 

the language accepted by M’ is finite. 

If M does not halt on w then M’ accepts all strings, so the language accepted by M’ is 

infinite. 

 

A recognizer for Linf would allow us to recognize if M does not halt on w, so that would 

accept the complement of the halting language.   

You can construct almost the same argument around the complement of the “universal 

language” {(M,w) | M accepts w}  We showed the universal language is RE but not 

recursive, so its complement isn’t RE. 



6. Let Lhippy-dippy be the set of encodings of Turing Machines that accept all strings. Our friend 

Happy (actually, his encoding) is a member of Lhippy-dippy.  The complement of Lhippy-dippy is Lskeptical, 

the set of Turing Machines that fail to accept at least one string.  Rice’s Theorem tells us that 

neither of these sets is Recursive.  

a. Prove that Lhippy-dippy is not Recursively Enumerable.  You might try reducing the 

complement of the halting langue to Lhippy-dippy. 

b. Either prove that Lskeptical is Recursively Enumerable or prove it isn’t. 

Neither of these is recursively enumerable.   

a)  We can reduce the complement of the halting language to Lhippy-dippy.  to see this, start 

with an (M, w) pair. Create a new Turing Machine M’ that runs on input x as follows: M’ 

simulates M on w for |x| steps.  If M halts on w within |x| steps, M’ rejects x; otherwise 

M’ accepts x.  M does not halt on w exactly when M’ is in Lhippy-dippy.  So a TM that 

recognizes the latter would recognize the complement of the halting language, and we 

know the latter is not recursively enumerable. 

b) This one is easier.  We reduce the complement of the universal language to this.  Given 

an (M, w) pair create a new Turing Machine M’.  For any input s, M’ accepts s if s is not 

w, and M’ simulates M on w if s is w.   M’ accepts all strings if an only if M accepts w.  

So if we could recognize if M’ is in  Lskeptical then we can recognize that (M, w) is in the 

complement of the universal language, which we know we can’t do. 


